ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАМЧАТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КамчатГТУ»)

Факультет информационных технологий

Кафедра «Высшая математика»

УТВЕРЖДАЮ

Декан факультета информационных технологий

Долге И.А.Рычка

» <u>04</u> 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Дифференциальные и разностные уравнения»

Направление подготовки 27.03.04 «Управление в технических системах» (уровень бакалавриата)

профиль:

«Управление и информатика в вычислительных системах»

Рабочая программа дисциплины составлена на основании $\Phi \Gamma OC$ ВО по направлению подготовки 27.03.04 «Управление в технических системах» и учебного плана $\Phi \Gamma EOY$ ВО «Камчат ΓTY ».

Составитель рабочей программы доцент кафедры ВМ.

m

А.А. Чермошенцева

Рабочая программа рассмотрена на заседании кафедры «Высшей математики» 17.04.2020, протокол № 8.

Заведущий кафедрой «Е	Зысшая математика»	Jug C	Р.И. Паровик
«/ ‡ » <u>84</u> 20	020 r.		

1 Цели и задачи учебной дисциплины

Целью дисциплины «Дифференциальные и разностные уравнения» является формирование у будущих специалистов знаний и умения применять дифференциальные и разностные уравнения при анализе и управлении современными техническими системами, освоение методов математического моделирования и анализа технических систем и сигналов.

Основная задача курса «Дифференциальные и разностные уравнения» заключается в развитии у студентов современных форм математического мышления, умения ставить и решать сложные инженерные задачи, возникающие в профессиональной практике.

2 Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

ОПК-1 — способность представлять адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики;

ОПК-2 — способность выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения соответствующий физико-математический аппарат;

 Π K-2 — способность проводить вычислительные эксперименты с использованием стандартных программных средств с целью получения математических моделей процессов и объектов автоматизации и управления.

Планируемые результаты обучения при изучении дисциплины, соотнесенные с планируемыми результатами освоения образовательной программы, представлены в таблице.

Таблица – Планируемые результаты обучения при изучении дисциплины, соотнесен-

ные с планируемыми результатами освоения образовательной программы

Код	Планируемые результаты		Код показа-
компетенции	освоения образовательной	чения по дисциплине	теля освое-
	программы		ния
ОПК-1	способность представлять адекватную современному уровню знаний научную картину мира на основе знания основных положе-	Знать: — основные типы дифференциальных и разностных уравнений и их возможности для решения сложных инженер-	3(ОПК-1)1
	ний, законов и методов естественных наук и ма-	ных задач.	
	тематики	Уметь: — применять теоретические знания для решения практических задач, применять алгоритмы, выполнять основные математические расчеты.	У(ОПК-1)1
		Владеть: — основными фактами, понятиями, определениями и теоремами, алгоритмами решения типовых задач.	В(ОПК-1)1

Код компетенции ОПК-2	Планируемые результаты освоения образовательной программы способность выявлять	Планируемый результат обучения по дисциплине Знать:	Код показателя освоения 3(ОПК-2)1
естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения соответствующий фи-		– основные типы дифференциальных и разностных уравнений и их возможности для решения сложных инженерных задач.	
	зико-математический аппарат	Уметь: — применять теоретические знания для решения практических задач, применять алгоритмы, выполнять основные математические расчеты.	У(ОПК-2)1
		Владеть: — основными фактами, понятиями, определениями и теоремами, алгоритмами решения типовых задач.	В(ОПК-2)1
ПК-2	способность проводить вычислительные эксперименты с использованием стандартных программных средств с целью получения математических моделей процессов и объектов	Знать: — основные типы дифференциальных и разностных уравнений и их возможности для решения сложных инженерных задач.	3(ПК-2)1
	автоматизации и управления	Уметь: — применять теоретические знания для решения практических задач, применять алгоритмы, выполнять основные математические расчеты.	У(ПК-2)1
		Владеть: — основными фактами, понятиями, определениями и теоремами, алгоритмами решения типовых задач.	В(ПК-2)1

3 Место дисциплины в структуре образовательной программы

Учебная дисциплина «Дифференциальные и разностные уравнения» является дисциплиной по выбору в вариативной части в структуре основной образовательной программы, её изучение базируется на курсе математики.

Теоретические знания и практические навыки, сформированные у студентов в процессе изучения дисциплины «Дифференциальные и разностные уравнения», являются необходимыми при изучении специальных дисциплин. Материал, изученный студентами в курсе, является базовым для освоения дисциплин: «Теория графов», «Математические основы теории систем».

4 Содержание дисциплины

4.1 Тематический план дисциплины

			рабо	гактна та по н учебнь тий	зи-		В	й по
Наименование разделов и тем	Всего часов	Аудиторные занятия	Лекции	Семинары (практические занятия)	Лабораторные работы	Самостоятельная работа	Формы текущего контроля	Итоговый контроль знаний по дисциплине
1	2	3	4	5	6	7	8	9
Тема 1 «Основные понятия и определения»	14	4	2	2		10	Опрос, ре- шение задач	
Тема 2 «Дифференциальные уравнения с разделяющимися переменными»	14	4	2	2		10	Опрос, ре- шение задач	
Тема 3 «Однородные дифференциальные уравнения»	18	8	4	4		10	Опрос, ре- шение задач	
Тема 4 «Линейные дифференциальные уравнения»	18	8	4	4		10	Опрос, ре- шение задач	
Тема 5 «Дифференциальные уравнения в полных дифференциалах»	14	4	2	2		10	Опрос, ре- шение задач	
Тема 6 «Дифференциальные уравнения не разрешимые относительно производной (уравнения Клеро и Лагранжа)»	14	4	2	2		10	Опрос, ре- шение задач	
Тема 7 «Дифференциальные уравнения высших порядков»	14	4	2	2		10	Опрос, ре- шение задач	
Тема 8 «Линейные однородные дифференциальные уравнения высших порядков»	14	4	2	2		10	Опрос, ре- шение задач	

1	2	3	4	5	6	7	8	9
Тема 9 «Линейные неоднородные	18	8	4	4		10	Опрос, ре-	
уравнения»							шение задач	
Тема 10 «Приложение дифферен-	14	4	2	2		10	Опрос, ре-	
циальных уравнений»							шение задач	
Тема 11 «Интегрирование диффе-	14	4	2	2		10	Опрос, ре-	
ренциальных уравнений с помо-							шение задач,	
щью рядов. Системы дифференци-							контрольная	
альных уравнений»							работа	
Тема 12 «Разностные уравнения.	18	8	4	4		10	Опрос, ре-	
Линейные разностные уравнения»							шение задач	
Тема 13 «Системы разностных	13	4	2	2		9	Опрос, ре-	
уравнений»							шение задач	
Зачет с оценкой								
Всего	180	68	34	34		112		_

4.2 Тематический план дисциплины для заочной формы обучения

Наименование разделов и тем	Всего часов	Аудиторные занятия	рабо	Семинары (практические и данданатия)	зи-	Самостоятельная работа	Формы текущего контроля	Итоговый контроль знаний по дисциплине
1	2	3	4	5	6	7	8	9
Тема 1 «Основные понятия и опре-	13	1	1		<u> </u>	12	Опрос, ре-	,
деления»							шение задач	
Тема 2 «Дифференциальные урав-	13	1	1			12	Опрос, ре-	
нения с разделяющимися перемен-							шение задач	
ными» Тема 3 «Однородные дифференци-	13	1	1			12	Опрос, ре-	
альные уравнения»	13	1	1			12	шение задач	
Тема 4 «Линейные дифференци-	13	1	1			12	Опрос, ре-	
альные уравнения»							шение задач	
Т 5	12	1	1			10	0	
Тема 5 «Дифференциальные уравнения в полных дифференциалах»	13	1	1			12	Опрос, ре- шение задач	
Тема 6 «Дифференциальные урав-	14	2	1	1		12		
нения не разрешимые относитель-	14	2	1	1		12	Опрос, ре- шение задач	
но производной (уравнения Клеро							шение задач	
и Лагранжа)»								
Тема 7 «Дифференциальные урав-	14	2	1	1		12	Опрос, ре-	
нения высших порядков»							шение задач	

1	2	3	4	5	6	7	8	9
Тема 8 «Линейные однородные	14	2	1	1		12	Опрос, ре-	
дифференциальные уравнения							шение задач	
высших порядков»								
Тема 9 «Линейные неоднородные	13	1		1		12	Опрос, ре-	
уравнения»							шение задач	
Тема 10 «Приложение дифферен-	14	1		1		13	Опрос, ре-	
циальных уравнений»							шение задач	
Тема 11 «Интегрирование диффе-	14	1		1		13	Опрос, ре-	
ренциальных уравнений с помо-							шение задач,	
щью рядов. Системы дифференци-							контрольная	
альных уравнений»							работа	
Тема 12 «Разностные уравнения.	14	1		1		13	Опрос, ре-	
Линейные разностные уравнения»							шение задач	
Тема 13 «Системы разностных	14	1		1		13	Опрос, ре-	
уравнений»							шение задач	
Зачет с оценкой	4							4
Всего	180	16	8	8		160		4

4.3 Содержание дисциплины

Тема 1 «Основные понятия и определения» *Лекция*

Обыкновенные дифференциальные уравнения. Основные понятия и определения. Интегральная кривая, фазовая траектория, изоклина, Геометрическая интерпретация решения. Задачи, приводящие к решению дифференциальных уравнений.

Основные понятия темы: обыкновенные дифференциальные уравнения, интегральная кривая, фазовая траектория, изоклина.

Практическое занятие

Форма занятия: решение типовых задач

Задания:

Решение задач из [2].

Тема 2 «Дифференциальные уравнения с разделяющимися переменными» *Лекция*

Задачи, приводящие к решению дифференциальных уравнений. Теорема о существовании и единственности решения задачи Коши дифференциального уравнения первого порядка. Дифференциальные уравнения с разделяющимися переменными. Вид, решение. Особые точки и особые решения.

Основные понятия темы: теорема о существовании и единственности решения задачи Коши дифференциального уравнения первого порядка, дифференциальные уравнения с разделяющимися переменными, особая точка, особое решение.

Практическое занятие

Форма занятия: решение типовых задач

Задания:

Решение задач из [2].

Тема 3 «Однородные дифференциальные уравнения»

Лекция

Однородные дифференциальные уравнения. Вид, замена, решение.

Основные понятия темы: однородное дифференциальное уравнение.

Практическое занятие

Форма занятия: решение типовых задач

Задания:

Решение задач из [2].

Тема 4 «Линейные дифференциальные уравнения»

Лекция

Линейные дифференциальные уравнения, вид, замена, решение, метод Бернулли, метод Лагранжа. Уравнение Бернулли.

Основные понятия темы: линейное дифференциальное уравнение, метод Бернулли, метод Лагранжа, уравнение Бернулли.

Основные понятия темы: однородное дифференциальное уравнение.

Практическое занятие

Форма занятия: решение типовых задач

Задания:

Решение задач из [2].

Тема 5 «Дифференциальные уравнения в полных дифференциалах»

Лекиия

Уравнения в полных дифференциалах, понятие, метод решения. Интегрирующий множитель.

Основные понятия темы: дифференциал, уравнение в полных дифференциалах, интегрирующий множитель.

Практическое занятие

Форма занятия: решение типовых задач

Задания:

Решение задач из [2].

Тема 6 «Дифференциальные уравнения не разрешимые относительно производной (уравнения Клеро и Лагранжа)»

Лекция

Дифференциальные уравнения не разрешимые относительно производной: уравнения Клеро и Лагранжа.

Основные понятия темы: уравнения Клеро и Лагранжа.

Практическое занятие

Форма занятия: решение типовых задач

Задания:

Решение задач из [2].

Тема 7 «Дифференциальные уравнения высших порядков»

Лекция

Дифференциальные уравнения высших порядков: общие понятия и определения. Дифференциальные уравнения, допускающие понижения порядка: уравнения, не содержащие искомой функции и нескольких последовательных производных. Дифференциальные уравнения, допускающие понижения порядка: уравнения, не содержащие явно независимой переменной; уравнения однородные относительно $y, y', y'' \dots y^{(n)}$.

Основные понятия темы: дифференциальные уравнения высших порядков, дифференциальные уравнения, допускающие понижение порядка.

Практическое занятие

Форма занятия: решение типовых задач

Задания:

Решение задач из [2].

Форма занятия: занятие в компьютерном классе

Задания:

Решение задач с использованием вычислительной техники:

Решение задач из [2].

Тема 8 «Линейные однородные дифференциальные уравнения высших порядков» *Лекция*

Теорема о структуре общего решения линейного однородного уравнения. Фундаментальная система решений. Нормальная фундаментальная система. Условия линейной зависимости и независимости. Определитель Вронского. Достаточное условие линейной независимости. Формула Лиувилля-Остроградского. Линейные однородные уравнения с постоянными коэффициентами. Характеристическое уравнение. Общий вид решения линейного дифференциального уравнения с постоянными коэффициентами в зависимости от корней характеристического уравнения (действительные, комплексно-сопряженные, кратность корней).

Основные понятия темы: фундаментальная система решений, нормальная фундаментальная система, определитель Вронского, формула Лиувилля-Остроградского, характеристическое уравнение.

Практическое занятие

Форма занятия: решение типовых задач

Задания:

Решение задач из [2].

Тема 9 «Линейные неоднородные уравнения»

Лекиия

Линейные неоднородные уравнения. Метод вариации произвольных постоянных (Лагранжа). Метод Коши. Формула Коши. Функция Коши. Принцип суперпозиции решений. Линейные неоднородные уравнения с постоянными коэффициентами. Правая часть. Контрольное число правой части (коэффициент в показателе у экспоненты). Общий вид частного решения линейного неоднородного дифференциального уравнения с постоянными коэффициентами в зависимости от вида правой части и совпадения контрольного числа с действительными корнями корней характеристического уравнения (резонансный и нерезонансный случай). Метод вариации произвольных постоянных. Метод неопределенных коэффициентов.

Основные понятия темы: линейные неоднородные уравнения, метод вариации произвольных постоянных, метод Коши, формула Коши, функция Коши, принцип суперпозиции решений, линейные неоднородные уравнения с постоянными коэффициентами, правая часть, метод вариации произвольных постоянных, метод неопределенных коэффициентов.

Практическое занятие

Форма занятия занятие в компьютерном классе

Задания:

Решение задач с использованием вычислительной техники:

Решение задач из [2].

Тема 10 «Приложение дифференциальных уравнений»

Основные понятия темы: применение дифференциальных уравнений в задачах различных наук.

Практическое занятие

Форма занятия: Миниконференция

Примерные темы докладов:

Приложение дифференциальных уравнений в задачах физики.

Приложение дифференциальных уравнений в задачах техники.

Приложение дифференциальных уравнений в задачах биологии.

Приложение дифференциальных уравнений в задачах экономики.

Приложение дифференциальных уравнений в задачах др. наук

Tema 11 «Интегрирование дифференциальных уравнений с помощью рядов. Системы дифференциальных уравнений»

Лекция

Применение степенных рядов к решению дифференциальных уравнений. Нормальная форма системы дифференциальных уравнений. Методы решения: метод интегрируемых комбинаций, метод исключений. Однородные системы линейных дифференциальных урав-

нений. Фундаментальная система решений. Фундаментальная матрица. Определитель Вронского. Формула Лиувилля-Остроградского. Линейные системы с постоянными коэффициентами. Метод Эйлера. Линейные неоднородные системы.

Основные понятия темы: нормальная форма системы дифференциальных уравнений, метод интегрируемых комбинаций, метод исключений, однородные системы линейных дифференциальных уравнений, фундаментальная система решений, фундаментальная матрица, определитель Вронского, формула Лиувилля-Остроградского, линейные системы с постоянными коэффициентами, метод Эйлера, линейные неоднородные системы.

Практическое занятие

Форма занятия: решение типовых задач

Типовое задание:

- 1. Найти общий интеграл дифференциального уравнения e^{x+3y}dy=xdx
- 2. Найти общее решение дифференциального уравнения у'+у=х√у
- 3. Найти общий интеграл дифференциального уравнения y-xy'=sec(y/x)
- 4. Найти общее решение дифференциального уравнения (1-х2)у"-ху=2
- 5. Решить задачу Коши $4y''+3y'-y=11\cos x-7\sin x$ y(0)=-2, y'(0)=0

Тема 12 «Разностные уравнения. Линейные разностные уравнения» *Лекция*

Конечные разностные функции одной действительной переменной. Основные понятия теории разностных уравнений. Простейшие разностные уравнения первого порядка. Линейная зависимость и линейная независимость функций. Определитель Казорати. Необходимый признак линейной зависимости функций. Линейные однородные разностные уравнения n- го порядка. Аналог формулы Абеля для линейного разностного уравнения n- го порядка. Линейные однородные разностные уравнения с постоянными действительными коэффициентами. Линейные неоднородные разностные уравнения. Линейные неоднородные разностные уравнения с постоянными действительными коэффициентами и со специальной правой частью.

Основные понятия темы: разностное уравнение первого порядка, линейная зависимость и независимость функций, определитель Казорати, необходимый признак линейной зависимости функций.

Практическое занятие

Форма занятия: решение типовых задач

Задания:

Решение задач по определению порядка разностного уравнения. Решение простейших разностных уравнений. Решение линейных однородных и неоднородных разностных уравнений.

Тема 13 «Системы разностных уравнений»

Лекция

Системы разностных уравнений, основные понятия. Линейные системы разностных уравнений. Метод Эйлера. Конкретные случаи. Построение фундаментальной системы решений линейной однородной системы разностных уравнений с постоянными коэффициентами. Линейная неоднородная система с постоянными коэффициентами и со специальной правой частью.

Основные понятия темы: система разностных уравнений, метод Эйлера, конкретный случай.

Практическое занятие

Форма занятия: решение типовых задач

Задания:

Решение задач: Решение систем разностных уравнений.

CPC

Изучение учебной литературы [1], [2], [3] Решение задач по темам Подготовка к модульному контролю

5 Учебно-методическое обеспечение для самостоятельной работы обучающихся

В целом внеаудиторная самостоятельная работа студента при изучении курса включает в себя следующие виды работ:

- проработка (изучение) материалов лекций;
- чтение и проработка рекомендованной основной и дополнительной литературы;
- подготовка к практическим (семинарским) занятиям;
- поиск и проработка материалов из Интернет-ресурсов, периодической печати;
- выполнение домашних заданий в форме творческих заданий, кейс-стадии, докладов;
- подготовка презентаций для иллюстрации докладов;
- выполнение контрольной работы, если предусмотрена учебным планом дисциплины;
- подготовка к текущему и итоговому (промежуточная аттестация) контролю знаний по дисциплине (экзамен).

Основная доля самостоятельной работы студентов приходится на проработку рекомендованной литературы с целью освоения теоретического курса, подготовку к практическим (семинарским) занятиям, тематика которых полностью охватывает содержание курса. Самостоятельная работа по подготовке к семинарским занятиям предполагает умение работать с первичной информацией.

6 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

6.1 Структура фонда оценочных средств

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине «Дифференциальные и разностные уравнения» представлен в приложении к рабочей программе дисциплины и включает в себя:

- -перечень компетенций с указанием этапов их формирования в процессе освоения образования; перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- типовые контрольные задания или материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций;

– методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

6.2 Перечень вопросов к промежуточной аттестации.

Пятый семестр, зачет с оценкой

- 1. Обыкновенные дифференциальные уравнения: основные понятия и определения, геометрическая интерпретация решения.
- 2. Обыкновенные дифференциальные уравнения: задачи, приводящие к решению дифференциальных уравнений
- 3. Теорема о существовании и единственности решения задачи Коши дифференциального уравнения первого порядка: постановка задачи Коши, сведение задачи Коши к интегральному уравнению типа Вольтера
- 4. Теорема о существовании и единственности решения задачи Коши дифференциального уравнения первого порядка: условие Липшица, лемма Гронуолла
- 5. Теорема о существовании и единственности решения задачи Коши дифференциального уравнения первого порядка: доказательство теоремы Коши методом последовательных приближений, оценка разности решений, непрерывная зависимость решения от начальных условий, правой части и параметра.
- 6. Дифференциальные уравнения первого порядка: Уравнения с разделяющимися переменными.
 - 7. Однородные и сводящиеся к однородным.
 - 8. Линейные уравнения первого порядка и уравнение Бернулли
- 9. Уравнения в полных дифференциалах и сводящиеся к ним (интегрирующий множитель).
- 10. Дифференциальные уравнения первого порядка: уравнения, не разрешенные относительно производной, особые точки и особые решения.
- 11. Системы дифференциальных уравнений: основные понятия и задача Коши, сведение дифференциальных уравнений высших порядков к системе дифференциальных уравнений.
 - 12. Системы дифференциальных уравнений: теорема Коши, оценка разности решений.
- 13. Системы линейных дифференциальных уравнений: определение и основные свойства решений, вытекающие из линейности, определитель Вронского, фундаментальная система решений, формула Лиувилля.
- 14. Системы линейных дифференциальных уравнений: теорема о структуре общего решения однородной и неоднородной системы.
- 15. Системы линейных дифференциальных уравнений: метод вариации произвольных постоянных, системы линейных уравнений с постоянными коэффициентами.
- 16. Линейные дифференциальные уравнения высших порядков: сведение к линейной системе. Определитель Вронского, структура общего решения однородного уравнения, общее решение неоднородного уравнения, метод вариации.
- 17. Линейные дифференциальные уравнения высших порядков: линейные дифференциальные уравнения с постоянными коэффициентами, уравнения со специальной правой частью.
- 18. Линейные дифференциальные уравнения высших порядков: уравнения Эйлера, Лагранжа, Чебышева.
- 19. Краевые задачи для дифференциальных уравнений: постановка краевой задачи, линейная краевая задача, сведение к задаче Коши.
- 20. Приближенные методы решения дифференциальных уравнений: метод последовательных приближений, применение степенных рядов.
- 21. Приближенные методы решения дифференциальных уравнений: метод Эйлера, понятие о конечных разностях и конечно-разностных методах.

- 22. Разностные уравнения: основные понятия и определения, примеры и задачи, приводящие к решению разностных уравнений.
- 23. Разностные уравнения: линейные разностные уравнения, линейные разностные уравнения с постоянными коэффициентами.
 - 24. Системы разностных уравнений: основные понятия и определения, решение.

7 Рекомендуемая литература

7.1 Основная литература

1. Агафонов С.А., Герман А.Д., Муратова Т.В. Дифференциальные уравнения. – Изд-во МГТУ им. Баумана, 2004. – 352 с.

7.2 Дополнительная литература

2. Кузнецов Л.А. Сборник заданий по высшей математике. Санкт-Петербург, Лань, 2005. Возможны также издания других лет.

7.3 Методические указания по дисциплине

3. Чермошенцева А.А. Дифференциальные и разностные уравнения. Программа курса и методические указания к изучению дисциплины для студентов направления подготовки 09.03.04 «Программная инженерия», 09.03.01 «Информатика и вычислительная техника», очной формы обучения и 27.03.04 «Управление в технических системах» очной и заочной форм обучения. – Петропавловск-Камчатский: КамчатГТУ, 2016.

8 Методические указания для обучающихся по освоению дисциплины

Методика преподавания данной дисциплины предполагает чтение лекций, проведение практических (семинарских) занятий, групповых и индивидуальных консультаций по отдельным (наиболее сложным) специфическим проблемам дисциплины. Предусмотрена самостоятельная работа студентов, а также прохождение аттестационных испытаний промежуточной аттестации (экзамен).

Лекции посвящаются рассмотрению наиболее важных концептуальных вопросов: основным понятиям; теоретическим основам разработки стратегии, организации их эффективной реализации; обсуждению вопросов, трактовка которых в литературе еще не устоялась либо является противоречивой. В ходе лекций студентам следует подготовить конспекты лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины; проверять термины, понятия с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь; обозначить вопросы, термины, материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, на практическом занятии.

Конкретные методики, модели, методы и инструменты разработки, принятия, оптимизации стратегических управленческих решений рассматриваются на практических занятиях.

Целью проведения практических (семинарских) занятий является закрепление знаний студентов, полученных ими в ходе изучения дисциплины на лекциях и самостоятельно. Практические занятия проводятся, в том числе, в форме семинаров; на них представляются и

обсуждаются доклады, обсуждаются вопросы по теме (дискуссии), разбираются конкретные ситуации из практики российского государственного и муниципального управления, проводится тестирование, проводятся опросы, также предусмотрено выполнение практических заданий. Для подготовки к занятиям семинарского типа студенты выполняют проработку рабочей программы, ориентируясь на вопросы для обсуждения, уделяя особое внимание целям и задачам, структуре и содержанию дисциплины; конспектирование источников; работу с конспектом лекций; подготовку ответов к контрольным вопросам, просмотр рекомендуемой литературы. Практические занятия проводятся по узловым и наиболее сложным вопросам (темам, разделам), они могут быть построены как на материале одной лекции, так и на содержании отдельного вопроса (вопросов) лекции, а также по определённой теме без чтения предварительной лекции. Главная особенность любого семинара - наличие элементов дискуссии, проблемы, диалога между преподавателем и обучающимися и самими обучающимися. Семинары выступают формой текущего контроля знаний обучающихся

При изучении дисциплины используются интерактивные методы обучения, такие как: 1. Лекция:

- проблемная лекция, предполагающая изложение материала через проблемность вопросов, задач или ситуаций. При этом процесс познания происходит в научном поиске, диалоге и сотрудничестве с преподавателем в процессе анализа и сравнения точек зрения;
- лекция-визуализация подача материала осуществляется средствами технических средств обучения с кратким комментированием демонстрируемых визуальных материалов (презентаций).

2. Семинар:

- тематический семинар этот вид семинара готовится и проводится с целью акцентирования внимания обучающихся на какой-либо актуальной теме или на наиболее важных и существенных ее аспектах. Перед началом семинара обучающимся дается задание выделить существенные стороны темы. Тематический семинар углубляет знания студентов, ориентирует их на активный поиск путей и способов решения затрагиваемой проблемы.
- проблемный семинар перед изучением раздела курса преподаватель предлагает обсудить проблемы, связанные с содержанием данной темы. Накануне обучающиеся получают задание отобрать, сформулировать и объяснить проблемы. Во время семинара в условиях групповой дискуссии проводится обсуждение проблем.

3. Игровые методы обучения:

– анализ конкретных ситуаций (КС). Под конкретной ситуацией понимается проблема, с которой тот или иной обучаемый, выступая в роли руководителя или иного профессионала, может в любое время встретиться в своей деятельности, и которая требует от него анализа, принятия решений, каких-либо конкретных действий. В этом случае на учебном занятии слушателям сообщается единая для всех исходная информация, определяющая объект управления. Преподаватель ставит перед обучаемыми задачу по анализу данной обстановки, но не формулирует проблему, которая в общем виде перед этим могла быть выявлена на лекции. Обучающиеся на основе исходной информации и результатов ее анализа сами должны сформулировать проблему и найти ее решение. В ходе занятия преподаватель может вводить возмущающее воздействие, проявляющееся в резком изменении обстановки и требующее от обучаемых неординарных действий. В ответ на это слушатели должны принять решение, устраняющее последствие возмущающего воздействия или уменьшающее его отрицательное влияние.

Тестирование - система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений обучающегося. Контрольная работа - средство проверки умений применять полученные знания для решения задач определенного типа по теме или разделу.. Текущий контроль знаний осуществляется в форме проведения семинаров, решения задач, тестирования, а также в предусмотренных формах контроля самостоятельной работы. Консультации преподавателя проводятся для обучающихся с целью дополнительных разъяснений и информации по возникающим вопросам при выполнении самосто-

ятельной работы или подготовке к практическим (семинарским) занятиям, подготовке рефератов, а также при подготовке к экзамену. Консультации преподавателя проводятся в соответствии с графиком, утвержденным на кафедре, обучающийся может ознакомиться с ним на информационном стенде. Дополнительные консультации могут быть назначены по согласованию с преподавателем в индивидуальном порядке.

9 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационно-справочных систем

9.1 Перечень информационных технологий, используемых при осуществлении образовательного процесса

- электронные образовательные ресурсы;
- использование слайд-презентаций;
- интерактивное общение с обучающимися и консультирование посредством электронной почты.

9.2 Перечень программного обеспечения, используемого при осуществлении образовательного процесса

При освоении дисциплины используется лицензионное программное обеспечение:

- текстовый редактор Microsoft Word;
- пакет Microsoft Office;
- электронные таблицы Microsoft Excel;
- презентационный редактор Microsoft Power Point

10 Материально-техническое обеспечение дисциплины

На кафедре имеется 4 аудитории для проведения лекционных и практических занятий, аудитория для проведения интерактивных занятий с проектором и компьютером с установленной программой PowerPoint.